1. Blumberg theorem.

In 1922 H. Blumberg [A1] proved that if \(X = Y = \mathbb{R} \), the reals then:

(*) for every \(f: X \to Y \), there exists \(D \subset X \), \(D \) dense in \(X \) such that \(f[D] \) is continuous.

Even for functions \(f: \mathbb{R} \to \mathbb{R} \), the set \(D \) in (*) cannot be made to have cardinality \(c \), see [A2].

(S. Baldwin [2] in [A5] showed recently that it is consistent with the axioms of set theory that the set \(D \) in (*) can always be chosen to be uncountably dense); the set \(D \) cannot be necessarily chosen so that for \(f: \mathbb{R} \to \mathbb{R} \) there exists a set \(N \subset \mathbb{R} \) of \(n \) - dense in \(\mathbb{R} \) such that \(f[N] \) is pointwise discontinuous (rel. \(\mathbb{N} \)).

2. Blumberg spaces.

Let \(Y = \mathbb{R} \). Call a space \(X \) Blumberg if (*) holds for \(Y = \mathbb{R} \). J.C. Bradford and C. Goffman [A3] proved that a metric space \(X \) is Blumberg if and only if \(X \) is Baire, i.e., a space in which open, nonempty subsets are of second category. The key lemma in their proof is Banach category theorem.

H.E. White Jr. [A4] extended Bradford-Goffman result to topological spaces \(X \) which have \(\sigma \)-disjoint pseudobases. He also showed that the reals \(R \) with the density topology is a Baire space not being Blumberg. W.A.R. Weiss in [9] of [A5] gave an example of a compact Hausdorff space which is not Blumberg.

3. The dynamics of Blumberg spaces.

It is easy to see that a dense, or a closed subspace of a Blumberg space need not be Blumberg. The Stone-Cech compactification of a dense subspace of a completely regular Blumberg space is a Blumberg space, a result due to R. Levy and R.H. McDowell [4] in [A6].

The Cartesian product of Blumberg spaces need not to be a Blumberg space, since there is a metric Baire space (hence Blumberg) whose square is not Baire. On the other hand, S. Todorcevic [A9] showed that there is a first countable space \(X \), which is not Blumberg, whereas \(X \times X \) is a Blumberg space. It follows from the above theorem that the image of a Blumberg space under an open and continuous function need not be Blumberg.

Consider the union \(X \) of the graph \(Z \) of the Riemann function, restricted to the rationals and the copy \(Y \) of the rationals in the \(N \)-axis. The natural projection of \(X \) onto \(Y \) (which is constant on \(Y \)) shows that even perfect, continuous functions do not necessarily preserve Blumberg spaces. In contrast, [A6] Blumberg spaces are preserved in preimages under irreducible surjections.

4. Varieties.

M. Valdivia [A10] showed that (*) holds for linear transformations, where \(X \) and \(Y \) are metrizable linear spaces, and \(X \) is of the second category.

L. Drewnowski [A11] proved that "dense subset" in Valdivia's theorem cannot be replaced with "dense linear subspace".

Also Blumberg sets - dense sets \(D \), appearing in (*) have been studied in connection with the characterizations of some almost continuous functions, e.g., quasicontinuous see [A12], section 6.

References

