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Abstract. The Banach-Mazur game and the Choquet game are revis-
ited to deduce new characterizations of sieve (almost) complete spaces.
Some classical results of Choquet are extended to larger classes of spaces.
By using the notion of sieve (almost) completeness, certain types of
topological closed graph and open mapping theorems are established.
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1. Introduction

In [5], Choquet introduced two classes of topological spaces, namely α-
favorable spaces and strongly α-favorable spaces, in terms of topological
games. Recall that the Banach-Mazur game on a topological space X, de-
noted by BM(X), is a two-person infinite game. Two players, called β and
α, alternatively choose non-empty open subsets of X with β starting first
such that U0 ⊇ V0 ⊇ U1 ⊇ V1 ⊇ · · · . Then α is said to win a play of BM(X)
if

⋂
n<ω Un 6= ∅. The space X is called α-favorable if α has a stationary

winning strategy in BM(X). The other class of spaces is defined by a game
called the Choquet game, denoted by CH(X). In CH(X), Player β chooses
a point x0 ∈ X and its open neighborhood U0. To respond to β’s move, α
chooses an open neighborhood V0 of x0 with V0 ⊆ U0. Then β responds to
α by selecting a point x1 ∈ V0 and its open neighborhood U1 with U1 ⊆ V0,
and α chooses an open neighborhood V1 of x1 with V1 ⊆ U1, and so forth.
Then a play

P = {(xn, Un, Vn) : xn ∈ Vn ⊆ Un and Un+1 ⊆ Vn for all n < ω}
of CH(X) is produced. We say that α wins the play P if

⋂
n<ω Un 6= ∅.

Furthermore, X is called strongly α-favorable if α has a stationary winning
strategy in CH(X).

By a strategy for Player α, we mean a function defined for each legal finite
sequence of moves of Player β; a strategy for Player β is defined similarly. A
stationary strategy is a strategy which depends on the opponent’s last move
only. A winning (stationary) strategy for a player is a (stationary) strategy
such that this player wins each play of the game no matter how the opponent

*This paper was originally written when the second author visited the University of
Auckland in February 2000. The present version was written when the first author visited
Youngstown State University in March 2001.
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moves according to the game. If α has a winning strategy in BM(X), then
X is called weakly α-favorable. For every point x ∈ X, let o(x) denote the
collection of all open neighborhood of x, and o(X) =

⋃
x∈X o(x). Let σ be

a strategy for α in CH(X). We call that a finite sequence (〈xj , Uj〉)0≤j≤i

(i ∈ ω) or an infinite sequence (〈xn, Un〉)n<ω in
⋃

x∈X{x}×o(x) a σ-sequence
if

xj ∈ σ(〈x0, U0〉, ..., 〈xj , Uj〉) ⊆ Uj ⊆ σ(〈x0, U0〉, ..., 〈xj−1, Uj−1〉)
for all 1 ≤ j ≤ i, or

xn ∈ σ(〈x0, U0〉, ..., 〈xn, Un〉) ⊆ Un ⊆ σ(〈x0, U0〉, ..., 〈xn−1, Un−1〉)
for all n ∈ N respectively. Then σ is a winning strategy for α in CH(X) if⋂

n<ω Un 6= ∅ for every infinite σ-sequence (〈xn, Un〉)n<ω in
⋃

x∈X{x}×o(x).
If σ is a stationary strategy, or a (stationary) strategy for other games, then
σ-sequences can be defined similarly. For more details and terminology on
BM(X), CH(X) and other topological games, refer to [13].

It is well-known that (strong) α-favorability is closely related to topolog-
ical completeness or Baireness. For instance, Choquet [5] has proved the
following two results:

(†) A metrizable space is strongly α-favorable if and only if it is Čech
complete.

(‡) A metrizable space is α-favorable if and only if it has a completely
metrizable dense Gδ-subspace.

It is interesting to consider what will happen when the metrizability in the
above results is reduced to some weaker topological properties. In this paper,
we shall extend these two results by considering classes of spaces which are
larger than that of metrizable spaces. To this end, we first study certain
variations of the Choquet game. New characterizations of certain classes of
spaces by using these variations are provided. In particular, sieve complete
spaces, almost complete spaces, and monotonically p-spaces are considered.
Then these classes of spaces shall be used to study topological versions of
closed-graph and open mapping theorems.

2. MP-game and MC-game

Let X be a topological space. We shall consider two variations of CH(X),
namely MP(X) and MC(X). In MP(X), the same players β and α and the
same plays as those described in CH(X) except the winning rule. We say
that α wins a play

P = {(xn, Bn, An) : xn ∈ An ⊆ Bn and Bn+1 ⊆ An for all n < ω}
of MP(X) if either (i)

⋂
n<ω Bn = ∅; or (ii)

⋂
n<ω Bn is a nonempty compact

set such that for any open set W containing
⋂

n<ω Bn, there exists some
n < ω with Bn ⊆ W . In MC(X), everything is the same as that in MP(X),
except that only (ii) is satisfied for α to win a play of MC(X). A sieve
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({Ui : i ∈ In}, πn)n<ω on X is a sequence of indexed covers {Ui : i ∈ In} of
X, together with maps πn : In+1 → In such that Ui = X for all i ∈ I0 and
Ui =

⋃{Uj : j ∈ π−1
n (i)} for all i ∈ In and all n < ω. Moreover, a π-chain

for such a sieve is a sequence (in)n<ω such that in ∈ In and πn(in+1) = in
for all n < ω. A filterbase F on X is said to be controlled by a sequence
(Un)n<ω of subsets of X if each Un contains some F ∈ F. Furthermore,
if each filterbase controlled by (Un)n<ω clusters, then (Un)n<ω is called a
complete sequence on X.

Theorem 2.1. The following are equivalent for a regular space X.
(a) There is an open sieve ({Ui : i ∈ In}, πn)n<ω on X such that for each

π-chain (in)n<ω with
⋂

n<ω Uin 6= ∅, (Uin)n<ω is a complete sequence.
(b) Player α has a stationary winning strategy in MP(X).
(c) Player α has a winning strategy in MP(X).

Proof. (a) ⇒ (b). Suppose that there exists an open sieve ({Ui : i ∈
In}, πn)n<ω on X as described in (a). We inductively define a station-
ary strategy σ for α. First, suppose that Player β chooses his first move
as 〈x0, B0〉 ∈

⋃
x∈X{x} × o(x). Then Player α chooses an i0 ∈ I0 (where

i0 depends on x0 only) such that x0 ∈ Ui0 , and defines σ(〈x0, B0〉) to be
any open neighborhood of x0 such that σ(〈x0, B0〉) ⊆ B0 ∩ Ui0 . Player β
responds to this move of α by selecting 〈x1, B1〉 ∈

⋃
x∈X{x} × o(x) such

that x1 ∈ B1 ⊆ σ(〈x0, B0〉). In return, α chooses an i1 ∈ π−1
0 (i0) such

that x1 ∈ Ui1 , and defines σ(〈x1, B1〉) to be any open neighborhood of x1

such that σ(〈x1, B1〉) ⊆ B1 ∩ Ui1 . Inductively, suppose that β has chosen
a finite sequence (〈x0, B0〉, ..., 〈xn+1, Bn+1〉) in

⋃
x∈X{x} × o(x) such that

xj+1 ∈ Bj+1 ⊆ σ(〈xj , Bj〉) for all 0 ≤ j ≤ n, and α has chosen a finite
sequence (ij)1≤j≤n such that ij ∈ π−1

j−1(ij−1) and σ(〈xj , Bj〉) ⊆ Bj ∩ Uij for
all 1 ≤ j ≤ n. Next, Player α selects some in+1 ∈ π−1

n (in) such that xn+1 ∈
Uin+1 (where in+1 depends on xn+1 only), and defines σ(〈xn+1, Bn+1〉) to be
any open neighborhood of xn+1 such that σ(〈xn+1, Bn+1〉) ⊆ Bn+1 ∩ Uin+1 .
This completes the definition of σ. To show that σ is a winning strategy
for β, let (〈xn, Bn〉)n<ω be a σ-sequence in MP(X). Then, by the above
definition of σ, there exists a π-chain (in)n<ω such that

xn ∈ σ(〈xn, Bn〉) ⊆ σ(〈xn, Bn〉) ⊆ Bn ∩ Uin

for all n < ω. If
⋂

n<ω Bn = ∅, there is nothing to prove. Otherwise,⋂
n<ω Uin 6= ∅. To see that (Bn)n<ω satisfies (ii) in MP(X), let F be a

filterbase on
⋂

n<ω Bn. Then F is controlled by (Uin)n<ω, and thus F has
a cluster point. This implies that

⋂
n<ω Bn is compact. Let W be an open

set containing
⋂

n<ω Bn. Suppose that for every n < ω there exists a point
zn ∈ Bn rW . For each n < ω, we set Fn = {zm : m ≥ n}. Then (Fn)n<ω

is a filterbase controlled by (Uin)n<ω, and thus it clusters at some point z.
Clearly, z is also a cluster point of (zn)n<ω with z 6∈ W . But z ∈ ⋂

n<ω Bn.
This is a contradiction. Thus, Bn ⊆ W for some n < ω.
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(b) ⇒ (c). It is trivial.
(c) ⇒ (a). Suppose that α has a winning strategy σ in MP(X). Let

I0 = {i0} be an arbitrary singleton, and define Ui0 = X. For each n > 0,
define In as the set of all finite σ-sequences of length n + 1. Let Ui = Bn

for every i = (〈x0, B0〉, · · · , 〈xn, Bn〉) ∈ In. Define π0 : I1 → I0 such that
π0(i1) = i0 for every i1 ∈ I1. Furthermore, for each n ∈ N, we define a map
πn : In+1 → In such that

πn(〈x0, B0〉, · · · , 〈xn, Bn〉, 〈xn+1, Bn+1〉) = (〈x0, B0〉, · · · , 〈xn, Bn〉)
for every finite σ-sequence (〈x0, B0〉, · · · , 〈xn, Bn〉, 〈xn+1, Bn+1〉) in In+1. It
can be checked readily that ({Ui : i ∈ In}, πn)n<ω is an open sieve on X.
We are to prove that this sieve satisfies (a). Let (in)n<ω be any π-chain
with

⋂
n<ω Uin 6= ∅. By the construction above, there exists a σ-sequence

(〈xn, Bn〉)n<ω in MP(X) corresponding to (in)n<ω such that
⋂

n<ω Bn 6= ∅.
Let F be a filterbase controlled by (Uin)n<ω. If F does not clusters at
anywhere, then for each point p ∈ ⋂

n<ω Bn there exist an open neigh-
borhood Wp of p and an Fp ∈ F with Wp ∩ Fp = ∅. Since

⋂
n<ω Bn

is compact, there are finitely many points p1, ..., pk in
⋂

n<ω Bn such that
W =

⋃k
i=1 Wpi ⊇

⋂
n<ω Bn. It follows that W ∩ (

⋂k
i=1 Fpi) = ∅. Since σ is

a winning strategy for α, then by condition (ii) in MP(X), we may select an
F ∈ F such that F ⊆ (

⋂k
i=1 Fpi) ∩W . However, this is a contradiction. ¤

A regular space which satisfies any condition in Theorem 2.1 is called a
monotonically p-space, abbrievated as mp-space. Moreover, a space is called
sieve complete [4, 9] if there exists an open sieve such that (Uin)n<ω is a
complete sequence for each π-chain (in)n<ω. Topsφe [14] characterized a
sieve complete space X by using the game SCM(X). In SCM(X), β and α
play the game as in CH(X), and α is said to win a play

P = {(xn, Bn, An) : xn ∈ An ⊆ Bn and Bn+1 ⊆ An for all n < ω}
of SCM(X) if every net eventually in every Bn (n < ω) clusters in X.

Theorem 2.2. The following are equivalent for a regular space X.
(a) X is sieve complete.
(b) Player α has a stationary winning strategy in SCM (X).
(c) Player α has a stationary winning strategy in MC(X).
(d) Player α has a winning strategy in SCM (X).
(e) Player α has a winning strategy in MC(X).

Proof. The proofs of (a)⇒ (b) and (e)⇒ (a) are similar to the corresponding
parts in Theorem 2.1, thus we omit them.

(b)⇒ (c). Suppose that α has a stationary winning strategy σ in SCM(X).
We shall prove that σ is also a stationary winning for α in MC(X). Let
(〈xn, Bn〉)n<ω be any σ-sequence in SCM(X). By regularity of X, we may
assume Bn+1 ⊆ Bn for all n < ω. Since (xn)n<ω is eventually in every Bn,
it clusters. Thus,

⋂
n<ω Bn 6= ∅. Similarly, every net in

⋂
Bn is eventually

in every Bn, which means that
⋂

n<ω Bn is compact. Let W be an open set
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containing
⋂

n<ω Bn. Suppose that for every n < ω there exists zn ∈ BnrW .
Then (zn)n<ω is a net eventually in each Bn, so it has a cluster point z 6∈ W .
But, z ∈ ⋂

n<ω Bn, which leads to a contradiction. Hence, Bn ⊆ W for some
n < ω. This implies that (〈xn, Bn〉)n<ω is also a σ-sequence in MC(X).

(c) ⇒ (d). Suppose that τ is a stationary winning strategy for α in
MC(X). Let (〈xn, Bn〉)n<ω be a τ -sequence in MC(X), and let (yδ)δ∈E be a
net which is eventually in each Bn. For each δ ∈ E, we put Fδ = {yλ : λ ≥
δ}. Then the filterbase (Fδ)δ∈E is controlled by (Bn)n<ω. By an argument
similar to that in Theorem 2.1, we can show that (Fδ)δ∈E clusters, which
implies that (yδ)δ∈E has a cluster point in X. Thus, (〈xn, Bn〉)n<ω is also a
τ -sequence in SCM(X).

(d) ⇒ (e). It is similar to (b) ⇒ (c), so its proof is omitted. ¤

3. Extensions of Choquet’s results

Strong α-favorability and Čech completeness are not equivalent in general,
simply because there exist locally completely metrizable (of course, strongly
α-favorable) Moore spaces which are not Čech complete [4, 6].

Theorem 3.1. A regular space X is sieve complete if and only if it is both
strongly α-favorable and mp.

Proof. The necessity follows from Theorem 2.2 directly. Suppose that X
is both strongly α-favorable and mp. Let σ1 and σ2 be stationary winning
strategies for Player α in CH(X) and MP(X) respectively. We define a
stationary strategy σ3 for α inductively as follows: Suppose that we have
defined σ3 for all finite sequences (〈x0, B0〉, ..., 〈xi, Bi〉) in

⋃
x∈X{x} × o(x),

where 0 ≤ i ≤ n, such that xj ∈ σ1(〈xj , Bj〉) ⊆ Bj ⊆ σ1(〈xj−1, Bj−1〉)
and xj ∈ σ2(〈xj , Bj〉) ⊆ Bj ⊆ σ2(〈xj−1, Bj−1〉) for all 1 ≤ j ≤ i, whenever
xj ∈ σ3(〈xj , Bj〉) ⊆ Bj ⊆ σ3(〈xj−1, Bj−1〉) for all 1 ≤ j ≤ i. Let

(〈x0, B0〉, ..., 〈xn, Bn〉, 〈xn+1, Bn+1〉)
be any finite sequence in

⋃
x∈X{x}×o(x) such that xi ∈ σ3(〈xi, Bi〉) ⊆ Bi ⊆

σ3(〈xi−1, Bi−1〉) for all 1 ≤ i ≤ n, and xn+1 ∈ Bn+1 ⊆ σ3(〈xn, Bn〉). Then
we define σ3(〈xn+1, Bn+1〉) = σ1(〈xn+1, Bn+1〉) ∩ σ2(〈xn+1, Bn+1〉). This
completes the definition of σ3. It is easy to see that each σ3-sequence is
also a σ1-sequence and σ2-sequence, so any σ3-sequence will satisfy both
condtions (i) and (ii) in MC(X). Thus, σ3 is a stationary winning strategy
for α in MC(X). ¤
Corollary 3.2. A Moore space is sieve complete if and only if it is strongly
α-favorable.

Sieve complete spaces are also called monotonically Čech complete in the
lierature, e.g., [4]. For paracompact spaces, sieve completeness is equivalent
to Čech completeness. Thus, Theorem 3.1 extends the first result of Choquet
(i.e., (†) in Section 1). To extend the second result of Choquet, we need some
notation. A family of subsets of a space X is said to be an almost cover if the
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union of all its members is dense in X. We shall call ({Ui : i ∈ In}, πn)n<ω

an almost sieve if it has all the properties of a sieve except that {Ui : i ∈ In}
need only be an almost cover of X and {Uj : j ∈ π−1

n (i)} need only be an
almost cover of Ui for all i ∈ In and all n ∈ ω. A space X is called almost
complete (almost mp) if X has an almost open sieve which is complete
(i.e., satisfying the conclusion in Theorem 2.1 (a)). Every almost complete
Tychonoff space has a Čech complete dense Gδ-subspace.

Theorem 3.3. A regular space X is almost complete if and only if it is
weakly α-favorable and almost mp.

Proof. The necessity is clear by definition. So, we only need to prove the
sufficiency. Suppose that ({Ui : i ∈ In}, πn)n<ω is an almost open sieve such
that for each π-chain (in)n<ω with

⋂
n<ω Uin 6= ∅, (Uin)n<ω is a complete

sequence, and let σ be a winning strategy for Player α in BM(X). We shall
define inductively an almost open complete sieve. First of all, let J0 = {j0}
be an arbitrary singleton and Vj0 = X. Since

⋃
i∈I1

Ui is dense in X, to each
nonempty open set B1 ⊆ X, we could assign a nonempty open set UiB1

such
that B1 ∩ UiB1

6= ∅, where iB1 ∈ I1. Let

J1 = {B1 ∩ UiB1
: B1 ∈ o(X), iB1 ∈ I1}.

For each j1 = B1∩UiB1
∈ J1, we define Vj1 = σ(B1∩UiB1

), and π′0(j1) = j0.
Now, fix any j1 = B1 ∩ UiB1

∈ J1. To each nonempty open set B2 ⊆ Vj1 ,
we assign an open set UiB2

such that B2 ∩ UiB2
6= ∅, where iB2 ∈ π−1

1 (iB1).
This is possible, since

⋃{Ui : i ∈ π−1
1 (iB1)} is dense in UiB1

. Next, we define

J2 = {(B1 ∩ UiB1
, B2 ∩ UiB2

) : B1, B2 ∈ o(X), B2 ⊆ σ(B1 ∩ UiB1
)}.

For each j2 = (B1∩UiB1
, B2∩UiB2

) ∈ J2, define Vj2 = σ(B1∩UiB1
, B2∩UiB2

),
and define π′1 : J2 → J1 by π′1(j2) = B1∩UiB1

. It is easy to see that {Vj : j ∈
J1} and {Vj : j ∈ J2} are almost open covers of X, and {Vj : j ∈ π′−1

1 (j1)}
is an almost open cover of Vj1 for each j1 ∈ J1. Continuing this procedure
infinitely many times inductively, we can define an open almost sieve ({Vj :
j ∈ Jn}, π′n)n<ω. To see that this almost sieve is complete, let (jn)n<ω be a
π′-chain. Then there exist a sequence (Bn)n∈N of nonempty open sets and a
π-chain (iBn)n<ω such that (Bn ∩ UiBn

)n∈N is a σ-sequence in BM(X) and
Vjn = σ(B1∩UiB1

, ..., Bn∩UiBn
) for each n ∈ N. Since σ is a winning strategy

for Player α in BM(X),
⋂

n<ω UiBn
6= ∅. By Theorem 2.1, (UiBn

)n<ω is a
complete sequence, which in turn implies (Vjn)n<ω is a complete sequence,
as Vjn ⊆ UiBn

for all n ∈ N. ¤

Corollary 3.4. An mp-space is almost complete if and only if it is weakly
α-favorable.
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White [15] proved that a weakly α-favorable space with a base of countable
order (abbreviated as BCO), is almost complete. Since every metric space
has a base of countable order, and each space with a base of countable order
is an mp-space, Theorem 3.3 extends both the second result of Choquet
(i.e., (‡) in Section 1), and the previously mentioned result of White. Also,
we notice that the Sorgenfrey line is strongly α-favorable, but it is not an
almost mp-space, since it is not almost complete.

4. Nearly continuous and δ-open mappings

In Functional Analysis, Closed Graph Theorem and Open Mapping The-
orem of linear mappings between Banach spaces are two fundamental and
important theorems. Many extensions of these two classical theorems for
mappings between topologically complete spaces have been established in
the literature,, where the lack of linearity of a mapping can be compensated
by the notion of near continuity or near openness, see [2, 3, 11] and [12].
In [12], the concept of separating maps is used to generalize the main the-
orem in [3]. Our first theorem in this section extends the main result in
[12] to sieve complete spaces by a similar argument. Recall that a mapping
f : X → Y is nearly continuous if for every x ∈ X and every neighborhood
V of f(x), the set f−1(V ) is a neighborhood of x. Dually, f is said to be
nearly open if for every x ∈ X and every neighborhood U of x, the set f(U)
is a neighborhood of f(x). A mapping f : X → Y is separating if for any
two distinct points u, v ∈ Y there exist open neighborhoods U, V of u, v
respectively such that f−1(U) and f−1(V ) are separated sets.

Theorem 4.1. If f : X → Y is a nearly continuous and separating mapping
into a sieve complete regular space Y , then f is continuous.

Proof. Let ({Ui : i ∈ In}, πn)n<ω be an open sieve on Y . Suppose that f is
not continuous at some point x ∈ X. Then there is an open neighborhood
V of f(x) such that f(U) r V 6= ∅ for every neighborhood U of x. Select
an open neighborhood G of f(x) with G ⊆ V . Since f is nearly continu-
ous, f−1(G) is a neighborhood of x. It follows that there exists some point
y ∈ f−1(G) ∩ f−1(Y r G). Next, select an open neighborhood H of f(y)
such that H ∩ G = ∅. Again, by near continuity of f , there exists a point
x0 ∈ f−1(H) ∩ f−1(G). Now, select an i0 ∈ I0, and an open neighborhood
A0 of f(x0) such that A0 ⊆ G ∩ Ui0 . Since f−1(A0) ∩ f−1(H) 6= ∅, we can
choose a point y0 ∈ f−1(A0)∩ f−1(H), an open neighborhood B0 of y0, and
an i′0 ∈ I0 such that B0 ⊆ H ∩ Ui′0 . Repeat this procedure infinitely many
times, we obtain two π-chains (in)n<ω and (i′n)n<ω, two sequences (An)n<ω

and (Bn)n<ω of open sets in Y such that for every n < ω, An+1 ⊆ An ∩Uin ,
Bn+1 ⊆ Bn∩Ui′n and f−1(Bn)∩f−1(An) 6= ∅. Since (Uin)n<ω and (Ui′n)n<ω

are two complete sequences, then
⋂

n<ω An and
⋂

n<ω Bn are nonempty com-
pact and disjoint sets. Moreover, {An : n < ω} and {Bn : n < ω} are outer
bases for

⋂
n<ω An and

⋂
n<ω Bn respectively. As f is separating, there are



8 JILING CAO AND ZBIGNIEW PIOTROWSKI

open sets U and V such that
⋂

n<ω An ⊆ U and
⋂

n<ω Bn ⊆ V , f−1(U)
and f−1(V ) are separated. Select some n0 < ω such that An0 ⊆ U and
Bn0 ⊆ V . This implies that f−1(An0) and f−1(Bn0) are separated, which is
a contradiction. ¤

Example 4.2. There exists a non-continuous, nearly continuous and sep-
arating mapping f : X → Y of a metric space X into an almost complete
Hausdorff space Y . Let X be the set of all real numbers with the usual
Euclidean topology. Let Y be the set of all real numbers endowed with the
topology generated by the subbase {U ⊆ Y : U is open in X}∪{P}, where P
is the set of all irrational numbers, and f : X → Y is the identity mapping.
Clearly, Y is Hausdorff. Let Q be the set of all rational numbers. Since
any irrational number and the closed subset Q cannot be separated by open
subsets, the space Y is not regular. Note that P is a Čech-complete dense
Gδ-subspace of Y , thus Y is almost complete. It can be checked easily that
f is nearly continuous and separating. But f is not continuous, as f−1(P)
is not open in X. ¤

There are some versions of Open Mapping Theorem corresponding to
Theorem 4.1. For instance, Noll [10] has proved that every nearly open
continuous bijection from an almost complete regular space to a Hausdorff
space is open. In studying images, preimages of Baire spaces and relevant
properties, two types of mappings called feebly open mappings and δ-open
mappings have played important roles. Recall that a mapping f : X → Y of
a space X to a space Y is feebly open (δ-open) if Intf(U) 6= ∅ (Intf(U) 6= ∅)
for each nonempty open U ⊆ X [8, 9]. It is clear that every feebly open
mapping is δ-open. We are interested in the question when δ-open mappings
are feebly open. We call a space X quasi-regular if for every nonempty open
set U of X there is an nonempty open set V with V ⊆ U .

Theorem 4.3. Every δ-open continuous bijection f : X → Y of an almost
complete quasi-regular space X onto a regular space Y is feebly open.

Proof. Let U ⊆ X be a nonempty open subset. By quasi-regularity of X,
we can choose a nonempty open subset V such that V ⊆ U . Since f is
continuous and δ-open, V ∩ f−1(Intf(V )) is nonempty open. Hence, we
may assume that f(V ) ⊆ Intf(V ). We shall show Intf(V ) ⊆ f(U). To do
so, let y ∈ Intf(V ) be an arbitrary point. Pick a point x ∈ X with y = f(x).
It suffices to show x ∈ V . Let W be any open neighborhood of x. We are
left to prove V ∩W 6= ∅. Again, by continuity of f , we may assume f(W ) ⊆
Intf(V ). Let V1 = V ∩ f−1(Intf(W )), and W1 = W ∩ f−1(Intf(W )). Then
f(V1) and f(W1) are dense subsets of Intf(W ). Note that open subspaces
of an almost complete space are also almost complete, and restrictions of a
δ-open mapping on open subspaces of its domain are still δ-open. Thus, V1

and W1 are almost complete, f ¹ V1 : V1 → Intf(W ) and f ¹ W1 : W1 →
Intf(W ) are continuous and δ-open. By Proposition 6.5 of [9], f(V1) and
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f(W1) are almost complete. Since X is quasi-regular and almost complete,
similar to Proposition 4.5 of [9], X is a Baire space. Thus, Y is also a Baire
one, and so is Intf(W ). It is easily seen that both f(V1) and f(W1) are
second category subsets of Intf(W ), which implies that f(V1)∩ f(W1) 6= ∅.
Since f is injective, V1 ∩W1 6= ∅. Hence, V ∩W 6= ∅. ¤

A mapping f : X → Y is called base ic-continuous if there exists a base B

of Y such that Intf−1(V ) = f−1(V )∩Intf−1(V ) for each V ∈ B. It is shown
in [7] that every homomorphism between two topological groups is base ic-
continuous. Similarly, one can show that linear mappings between Banach
spaces are base ic-continuous. It is known that linear mappings between
Banach spaces are nearly continuous. Motivated by these facts, one may
ask whether base ic-continuity has any relations with near continuity in the
realm of certain “topologically complete” spaces. Unfortunately, the answer
is “no”. Recall that a space is resolvable if it is dense-in-itself and has two
disjoint dense subsets. It is well-known that dense-in-itself sequential spaces
are resolvable.

Theorem 4.4. Let X be any resolvable and connected Hausdorff space.
Then there exists a nearly continuous real-valued mapping f : X → R which
is not base ic-continuous.

Proof. Let D1 and D2 be two disjoint dense subsets of X. Without loss of
generality, we may assume that X = D1 ∪D2. Since X is Hausdorff, we can
choose a nonempty open subset G of X such that G 6= X. Let f : X → R
be a real-valued mapping defined by the following formula

f(x) =





1, x ∈ G;
1, x ∈ (X \G) ∩D1;
0, Otherwise.

We are going to show that f is nearly continuous. First, we notice that

f−1({0}) = (X \G) ∩D2 ⊆ X \G ⊆ Intf−1({0}).

Second, as X = G∪(X \G) ⊆ f−1({1}), we obtain f−1({1}) ⊆ Intf−1({1}).
Thus, f is nearly continuous. Furthermore, note that Intf−1({1}) = IntG
and G = f−1({1}) ∩ Intf−1({1}). As X is connected, G is not open. Thus,
we have G 6= IntG. It follows that Intf−1({1}) 6= f−1({1}) ∩ Intf−1({1}).
Therefore, f is not base ic-continuous. ¤

By Theorem 4.4, there are many nearly continuous functions which are
not base ic-continuous. On the other hand, the simple mapping f : R→ R,
defined by f(x) = 1

x for x 6= 0 and f(0) = 0, is separating, base ic-continuous
and has a closed graph. But, it is not nearly continuous.
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