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A Note on Continuity Points of Functions

§1.

Using the fact that R is locally connected and locally compact, it can be shown
that if f : R x R — R is a separately continuous function with a closed graph,

then f is continuous. Instead of proving this result, we will consider the question

of how it might be generalized. Specifically, what conditions on spaces X,Y, and
Z are necessary and sufficient to guarantee that a separately continuous function
f: X xY — Z with a closed graph is continuous? We give two examples that
show some limitations.

Example 1: Let X =Y = [0,1]— {1 : n € N} with the usual topology. Notice
that X is not locally connected since 0 does not have a connected neighborhood.

Define f: X x Y — R by

n, ifz,y € (F5 &) for somen €N

flz,y) = {

0, otherwise.

It is easy to see that f is separately continuous, has a closed graph, but is not
continuous at (0, 0).

As we shall show, if X or Y is locally connected, then a function with the prop-
erties mentioned above will be continuous. In fact, we may replace the codomain
R by any locally compact space Z. But what if Z is not locally compact?

Example 2: Let I = [0,1] and let Z be a separable Hilbert space with or-
thonormal basis {e,}%,. Let ¢ be defined by

1—z—y?% ifz2+4+y2<1
0, ifz? +¢y2>1

#(z,y) = {

and let

bu(z,y) = ¢(2n(n + 1)z — (2n + 1),2n(n + 1)y — (2n + 1)),
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for each n € N. Each function ¢, is 1 at the center (2:(':;*:1), 2:(";;11)) of the circle
inscribed in the square

[ral % [mra]

_, X _—, =

n+1l'n n+l'n
and vanishes outside of this circle. Define f : I x I — X by f(z,y) =
Y02, ¢n(z,y)en. Then on each square (37,%) X (737, =) we have f(z,y) =
én(z,y)en and outside these squares f vanishes. It is easy to see that at each
(z,y) # (0,0) f is continuous, and since f(0,z) = f(z,0) =0 foreachz € I, f is
separately continuous at (0,0). In addition to this, f has a closed graph. However,
f is not continuous at (0,0) since

I 2n +1 2n+1
2n(n +1)" 2n(n +1)

) — 5(0,0)[1 = |[eall = 1
for every n € N.

§2.

As we have seen in the first section, we cannot guarantee that a separately
continuous function f : X x Y — Z with a closed graph will be continuous if
neither X nor Y is locally connected or if Z is not locally compact. However, we
have the following theorem.

Theorem 1. Let X and Y be topological spaces with Y locally connected. Let
Z be locally compact and suppose that f : X X Y — Z has continuous y-sections
and connected x-sections. If f has a closed graph, then f is continuous.

Proof: Let (a,b) € X xY and suppose f is not continuous at (a, b). Then there
is a neighborhood W of f(a, b) such that, for any neighborhood N of (a,b), f(N) ¢
W. Since Z is locally compact, we may assume that W is compact. Let D be the
set of all neighborhoods U x V' of (a, b) such that f(U,b) C W and V is connected.
Because of the continuity of the y-sections of f and the local connectedness of Y,
the set D is a neighborhood basis at (a,b). Also D can be directed by containment
(that is, « < B if @ D B). Let @« = U x V be an element of D. Since f(U x
V) ¢ W, there is a point (z,y) € U x V such that f(z,y) ¢ W, and since
fUb) C W, f(z,b) € W. Theset f(z,V) is connected because z-sections of f are
connected. Hence there is a point (Z4,ya) € U X V such that f(z4,y,) € W — W.
Now (f(%a,¥a) : @ € D) is a net in the compact set W — W. Hence it contains
a convergent subnet (f(Zn(),¥n(e)) : @ € D'), which converges to some point
c € W — W. Because D is a neighborhood basis at (a, b), the net

((Za(a) Yn(a)s f(Tn(a))) : @ € D)
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converges to (a,b,c), which implies that ¢ = f(a,b) since f has a closed graph.
This is impossible since f(a,b) € W and ¢ € W — W. Therefore f is continuous.

Remark 1: As an immediate consequence of Theorem 1 we have that if X is
locally connected, Y is locally compact, and f : X = Y is a connected mapping
with a closed graph, then f is continuous. This can be easily seen by applying the
theorem to the function f : {0} x X — Y defined by f(0,2) = f(z).

§3.

The second part of this paper will deal with the problem of finding the weakest
assumptions on spaces X,Y and Z and the sections fz, f¥ of functions f : X XY —
Z such that f has at least one point of (joint) continuity.

One source of the results of this nature is the Baire-Lebesgue-Kuratowski-
Montgomery theorem which says that if X and Y are metric and if f: X XY — R
is continuous in z and is of class a in y, then f is of class (¢ + 1). Now, ifa =0
and X x Y is Baire, then the set C(f) is a dense G5 subset of X x Y by Baire’s
Theorem, f being of 1°! class (see [P3] for further discussion on this topic).

Recently, G. Debs [De] has shown that if X is a special a-favorable pace (thus
Baire), Y is first countable, X x Y is Baire, and f: X x Y — M (M-metric) is
such that all of its z-sections f, are continuous and all of its y-sections fY are,
what he calls, of “first class”, then the set C(f) is dense in X x Y. (This result
was unknown even in the case when X =Y = M = [0,1].)

Remark 2: The first-named author has obtained very similar results (see [P1]
and [P2]) using an actually larger class of spaces X (the entire class of Baire
spaces) and the somewhat unrelated class of functions f whose y-sections fY are
quasi-continuous® (instead of “first class”) together with a strengthened form of
the conclusion, namely:

If X is Baire, Y is first countable and Z is metric and if a function f : X x
Y — Z has all its z-sections f, continuous and has all of its y-sections f¥ quasi-
continuous, then for all y € Y, the set C(f) is a dense G subset in X x {y}.

Following N.F.G. Martin [Ma], a function f : X — Y is called quasi-continuous
if for every z € X, for every open set U containing z, and for every open set V
containing f(z), there is an open nonempty set U’ C U such that f(U') C V.

A class of functions that is closely related to functions of first class of Baire is
the class of pointwise discontinuous functions (see [Ku]). f : X — Y is pointwise
discontinuous (or, shortly: PWD) if the set C(f) of points of continuity is dense

1This class of functions has been defined by V. Volterra in R. Baire’s paper [Ba] p. 75.



in the domain of f2.
R. Baire showed the following result:

Theorem. (R. Baire) If f : R — R is of the first class of Baire, it is PWD.

The converse to this theorem is not true (!) — see J.C. Oxtoby [02].
For “nice” spaces, say X = Y = R, we have the following diagram (where
“——” denotes the inclusion):

QUASI-CONTINUITY

/ N\
CONTINUITY N PWD
N 1ST CLASS Ve

The survey paper [Ne] contains proofs of the implications pertaining to quasi-
continuity in the above diagram.

In this section we strengthen the result of G. Debs and the just mentioned
result by the first-named author.

The following Lemma clearly follows from Baire Category Theorem.

Lemma: ([DS]), Theorem 1.1 and 1.2, p. 220).
Let X be a Baire space and let M be metric. Then f: X — M is PWD iff f

satisfies the following condition:

(*) for every z € X, for every € > 0, and for every neighborhood
U(z) of = there exists an open, nonempty set U,U C U(x), such that
d(f(z), f(y)) < € for any two points z,y € U.

A pseudo-base, or simply a 7-base, (see [O1]) for a space (X,7T) is a subset P
of T such that every nonempty element U of 7 contains a nonempty element G of

P.

Theorem 2. Let X be Baire and Y be locally of w-countable type (i.e., each
open nonempty subset of Y contains an open nonempty subset having a countable
w-base) such that X x Y is Baire. Further let (M,d) be a metric space. Let
f: X xY — M be a function such that all of its z-sections f, are PWD and all
of its y-sections fY are continuous. Then C(f) is a dense G5 subset of X X Y.

Proof: Given an arbitrary (zo,y0) € X XY, let U and V be open neighborhoods
of 2o and yo, respectively. Fix € > 0. Further assume V contains an open subset
having a countable 7-base {G,}.

2This class of functions was defined by H. Hankel in 1870.
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Define the set A, by
A, = {z € U : there are open V; C V and G, C V, such that for each

y1,y2 € Vi we have d(f(z, 1), f(2,92)) < €/8}.

For z € U, f. (being PWD) satisfies (), so there is a nonempty open set V; C
V such that for each yy,y2 € V, we have d(f(z,v1), f(z,¥2)) < ¢/8. Since {Gr} is
a 7-base for an open nonempty subset of V, there is an index n such that G, C V.,
and it follows that U C UpenAn. Since by definition U D UnenAn, U = Unen4n.

X being Baire, U is of second category. So, there is an index n € N and a
nonempty open set U’ C U such that A, N U’ is dense in U'. Let (p,q) € U' X Ga.
Since f? is continuous, there is an open nonempty subset U” C U’ such that for
each z1, 2, € U” we have d(f(z1,49), f(%2,9)) < §-

Now consider the set

S =U"x{g})U (AN T") X Gn).
It is easy to see that intS # 0.

Now, take (z,y) € U” x G, and (u,v) € S. By continuity of f*, there is an
open set U, C U” such that for each z; € U, we have d(f(z,y), f(z1,9)) < %
Since A, N U" is dense in U” there is z* € U, N U" N An. This gives (z*,y) € S.

Thus we get the following estimate:

d(f(z,y), f(u,v)) < d(f(=",y), f(2,9)) + d(f(",y), f(",9)) +

+d(f(z*,q), f(u, ) + d(f(u, q), f(w,v)) < % + %

+E+E_E
8 8 2

This way for each (2% y°), (z,y) € U" x G, we get

d(f(xoa yO), f(xa y)) <eE.

Now, since U” x G, is an open, nonempty subset of U x V, we have proved
that f satisfies (*) at (zo,y0) and hence, by the Lemma, C(f) is a dense G5, M
being metric and X x Y being Baire.

We shall now exhibit an example showing that the assumption that the y-
sections are continuous in the Theorem is real; that is, it can not be weakened to
the one that the y-sections are assumed to be (only) PWD.

Example 3: Let I = [0,1] and let R be the set of reals. Put D, = {(z,y) :

z = —2’%,y = £, where k and p are all odd numbers between 0 and 2"}. Let

D = U2, D,. It is easy to see that D = I?. Now, let us define f : I? = R by:
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f(z,y) = 1 for (z,y) € D and f(z,y) = 0 if (z,y) ¢ D. The function f is not
PWD as a function of two variables, however each section f, and f¥ is PWD —
every such section has finitely many “points of jump” of f.

Remark 3: Example 3 can be generalized to the following result, (see [P4],
pp- 77, 78):

Let X and Y be dense-in-themselves, separable spaces and let Z be a Hausdorff
space containing at least two points. Then there is a function f : X XY — Z such
that all the z-sections f, and all the y-sections f¥ are PWD, while f is not PWD.

Remark 4: The result mentioned in Remark 2 can be further generalized;
the assumption “Y is first countable” can be weakened to “Y contains a dense
subspace of points of first countability”.

Remark 5: Both Debs’s Theorem and our Theorem 4 are partial (positive)
answers to a spectacular problem of M. Talagrand [Ta]: Let X be Baire, Y be
compact and let f : X x Y — R be separately continuous. Is C(f) # 07
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