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Abstract. Consider the following statement:
(∗) Let X, Y, and Z be spaces and let f : X × Y → Z be separately
continuous. Then f is uniquely determined by its values on any dense
subset of X × Y .

W. Sierpiński proved that (∗) holds if X = Y = Z = R, the set of real
numbers. We provide a large class of spaces satisfying (∗). An example is
given showing some limitations of this set-up.

I. Introduction.

A space here means a topological space. Also, unless explicitly stated, no separation
axioms are assumed upon the spaces considered.

It is well known (see e.g. [En] p.59) that every continuous function f from a space X
into a Hausdorff space Y is uniquely determined by its values on any dense subset of X;
in other words, if two continuous functions agree on a dense subset of X, then they agree
throughout X.

Borel functions or Baire functions of any class fail to have the above property. (Con-
sider step functions.) Also, connected functions are not determined by their values on dense
subsets. (Consider two “topological sine curves” having different values at the origin.)

The just mentioned examples show that the unique determination of a function by
its values on a dense subset is quite a strong property which requires almost the full
strength of continuity. It should be emphasized that when we speak of a function as being
determined by its values on a dense set, there is always a certain collection of functions
under consideration (for example, continuous functions). The values of that function on a
dense set and its membership in the collection are what uniquely determine it. (See [Ng].)

Nevertheless, W. Sierpiński [Si] showed that any real-valued, separately continuous
function on Rn is uniquely determined by its values on any dense subset the domain
space. Sierpiński’s result has been proven again in [Ma] and [To] and generalized by [GN]
and [Co].

Our generalization (see Structural Lemma) is applicable to a larger class of spaces not
considered by any of the previous authors. We shall also provide an example (Example 1
below) showing a limitation of Sierpiński’s theorem.

II. Sierpiński’s Theorem. Questions and Answers.

The following seven questions come naturally while considering possible extensions of
Sierpiński’s result.
(1) Pertaining the size of the domain, does the therorem hold for the infinite product

[0, 1]ℵ0 ?
(2) Relating to the type of the spaces considered in the product, there are the following

four cases:
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(a) Is the assumption that at least one of the factors of the domain space is Baire
necessary?

(b) Can the domain space be the product of two Baire spaces, at least one of which
is second countable?

(c) Can the domain space be the product of a Baire space and a compact Hausdorff
space?

(d) Can the domain space be the product of two compact Hausdorff spaces?
(3) Pertaining to the range, is the assumption that the range space Z is the set R of the

real numbers necessary?
(4) Relating to the type of all x-sections fx and all y-sections fy: Assume that all x-

sections and all y-sections are determined by their values on dense subspaces. Is the
function f : R2 → R uniquely determined by its values on any dense subset?
Here are some answers to the above questions.
Ad (1). Sierpiński’s theorem fails for the infinite product [0, 1]ℵ0 . (See [Co], Remark

2.3, p. 133.)
Ad (2a). Yes, see [GN], p. 998, where it is stated that the theorem fails for the domain

space Q×Q, where Q is the space of rational numbers.
Ad (2b). Yes, see [Co], Corollary 2.1, p. 132, or [GN], Theorem 1, p. 997. R. A.

McCoy [MC] announced another related result: Let X and Y be metric spaces, at least
one of which is a Baire space, and let Z be a Hausdorff space. If f : X × Y → Z is a
separately continuous function, then f is uniquely determined by its values on a dense set.

Ad (2c). We do not know the answer to this question. (See Remark 2 later in the
text.)

Ad (2d). The answer is yes. (See [Tr].)
Ad (3). No, see either [Co], [GN], or [MC], where R is replaced by spaces Z that are

completely regular, regular Hausdorff, or Hausdorff, respectively .
Ad (4). No, the following is a counterexample.
Example 1. Let I = [0, 1] and let D be a dense set in I2 such that for each x ∈ I

each of the sets D ∩ ({x} × I) and D ∩ (I × {x}) contains at most one point. (Note: D
can be countable or uncountable.) Now for each α ∈ I let

fα(x, y) =
{

α, if (x, y) ∈ I2 −D,
π, if (x, y) ∈ D.

Then for α 6= β we have that fα,x(y) 6= fβ,x(y) except possibly for one value of y. Hence,
the x-sections of these functions are determined on dense sets. Similarly, it can be seen
that the y-sections of these functions are determined on dense sets.

Now we observe that for all (x, y) ∈ D and α 6= β we have fα(x, y) = fβ(x, y) even
though fα 6= fβ . Hence, the collection {fα : α ∈ I} is not determined on dense sets. ut

III. The Structural Lemma.

We shall start this section with a definition that will be used in the sequel. Namely,
following Z. Froĺık [Fr], we say that a function f : X → Y is feebly continuous if for every
open nonempty set V ⊂ Y the following holds:

f−1(V ) 6= ∅ ⇒ Intf−1(V ) 6= ∅.
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Feebly continuous functions were introduced in connection with the preservation of
baireness under functions ([Fr]; [Du], p.256). Step functions and the topological sine curve
with the value y0 at 0, −1 ≤ y0 ≤ 1, serve as examples of feebly continuous functions.

What can be easily seen is that feeble continuity, in general, does not allow a single
point jump discontinuity. However, the following function f : R → R is feebly continuous:
f(x) = x if x 6= 1 and x 6= −1, f(1) = −1, and f(−1) = 1. Nevertheless, the following is
true.

Lemma. Let Y be T2. Further, let x0 ∈ X, D be dense in X, and let f : X → Y be
a function. If f(D) = {a} 6= {b} = f({x0}), then f is not feebly continuous.

Proof. Since Y is T2, there are open sets Va and Vb around a and b, respectively, such
that Va ∩ Vb = ∅. Since b ∈ f−1(Vb), we have f−1(Vb) 6= ∅. Now,

f−1(Va ∩ Vb) = f−1(Va) ∩ f−1(Vb) = ∅. (∗)

Observe that
f−1(f(D)) ⊂ f−1(Va).

In view of (∗), this implies
f−1(f(D)) ∩ f−1(Vb) = ∅.

So,
D ∩ f−1(Vb) = ∅.

But D is dense in X (!); that is, D meets every open, nonempty subset of X. Hence,
Intf−1(Vb) = ∅; in other words, f is not feebly continuous. ut

We are now ready for the main result of the paper.
Structural Lemma. Assume that every separately continuous function from the

product X = X1 ×X2 × . . .×Xn into a completely regular space Z is feebly continuous.
Then any separately continuous function from X into Z is determined by its values on any
dense subset of the domain.

Proof. Let l and k be abitrary, separately continuous functions from X into Z that
agree on a dense subset D ⊂ X and such that l(x0) 6= k(x0) for some point x0 ∈ X. Since
Z is completely regular, there is a continuous function c : Z → [0, 1] such that

c(l(x0)) = 0 and c(k(x0)) = 1.

Here l(x0) and {k(x0)} play the respective roles of “a point” and “a closed set not contain-
ing the point,” mentioned in the definition of complete regularity. Clearly, both composi-
tions c◦ l and c◦k are separately continuous as compositions of a continuous function with
a separately continuous one. Since c ◦ l and c ◦ k agree on D, it follows that the function
f = c ◦ k− c ◦ l is a separately continuous function into [−1, 1] that is 0 on D and 1 at x0.
Now by the above lemma, f is not feebly continuous. This contradicts the hypothesis that
every separately continuous function from the product X into Z is feebly continuous. ut
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IV. Applications of the Structural Lemma.

In order to apply our structural lemma to Sierpiński-type theorems, we need to know
when separate continuity of f : X × Y → Z implies feeble continuity.

Before looking at a few results of this type, let us recall that a function f : X →
Y is termed quasicontinuous if for every x0 ∈ X and any open sets U and V , where
x0 ∈ U and f(x0) ∈ V , we have Intf−1(V ) ∩ U 6= ∅. The notion of a quasicontinuous
function was introduced by V. Volterra and is mentioned in the now-classical monograph
by R. Baire [Ba] (p. 95), which considers the properties of separately continuous functions
defined on the plane. It is true that every continuous function is quasicontinuous and every
quasicontinuous function is feebly continuous. The converse implications, in general, do
not hold.

Also, call a space locally second countable if every point of the space possesses a
neighborhood satisfying the second countability axiom.

Proposition ([Ne], Theorem 2) Let X be a Baire space, Y be locally second countable
and Z be regular. Let f : X × Y → Z be such that all y-sections fy are quasicontinuous
and all x-sections fx are quasicontinuous with the exception of a set of first category. Then
f is quasicontinuous.

The following Sierpiński-type theorem is a corollary from the Structural Lemma and
the above proposition.

Corollary Let X be a Baire space, Y be locally second countable, and Z be completely
regular. Let f : X × Y → Z be separately continuous. Then f is uniquely determined by
its values on any dense subset of the domain.

Proof. By the proposition above such an f is quasicontinuous, hence feebly continuous.
Now we apply the Structural Lemma to complete the proof. ut

V. Remarks and Comments.

Remark 1. The technique used in our lemma cannot be automatically transferred
to the case when the function f :

∏n
i=1 Xi → Y is pointwise discontinuous, or even if it

is of the first class of Baire. Easy examples (e.g., the Riemann function) show that first
class functions do allow single point jump discontinuities.

Remark 2. The problem whether every separately continuous real-valued function
defined on a product of a Baire space X and a compact Hausdorff space is determined
by its values on a dense subspace is naturally linked to the still unsolved problem of M.
Talagrand [Ta1].

Talagrand’s problem: Let X be Baire, Y be compact Hausdorff, and let f : X×Y →
R be separately continuous. Is the set C(f) of points of continuity nonempty?

Talagrand’s example of an α-favorable space that is not Namioka provides an example
of a real-valued separately continuous function defined on a product of a Baire space and
a compact Hausdorff space still having “many” points of continuity ([Ta2], see also [P1]
and [PW]).

We have the following question: If X is a Baire space and Y is a compact Hausdorff
space, is every separately continuous function f : X × Y → R feebly continuous?

A positive answer to the above question would solve both Talagrand’s problem and
our question (2c). Obviously, we could then use the Structural Lemma: in the case of
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Talagrand’s problem, the domain X × Y is a Baire space; f , being feebly continuous, has
a nonempty set C(f) of points of continuity.

Remark 3. The class of functions determined by dense sets has been studied also in
[Ng].

Remark 4. Methods used in the proof of the Structural Lemma have been used
already in [GN] (see footnote 2 and Theorem 1′, both p.997) in a much weaker case when
the separately continuous function f is quasi-continuous.
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